

NIAC Mission

- Focus on Revolutionary Advanced Concepts for Architectures and Systems
- Be an institute independent of NASA
 - -- Management and guidance external to NASA
 - -- Non-NASA (mostly) peer review
 - -- NIAC issues and manages research grants/contracts
 - -- Contractually reports to GSFC with funding from NASA HQ
- Operate as a virtual institute over the internet (http://www.niac.usra.edu)
 - -- Calls for proposals issued through NIAC website
 - -- Proposals only accepted electronically
 - -- All abstracts, reports, weblinks and presentations are available on NIAC website
- Succinct technical proposal requirements and peer review
 - -- Phase I (12 pages), Phase II (25 pages)
 - -- Typical evaluation process, 2-2.5 months from proposal receipt to award

NIAC Advanced Concepts

In the context of NIAC requirements, successful proposals for advanced concepts will be:

- Revolutionary, new and not duplicative of previously studied concepts,
- An architecture or system, and not a technology development
- Described in a NASA mission context,
- Adequately substantiated with a description of the scientific principles that form the basis for the concept,
- Largely independent of existing technology or a unique combination of systems and technologies.

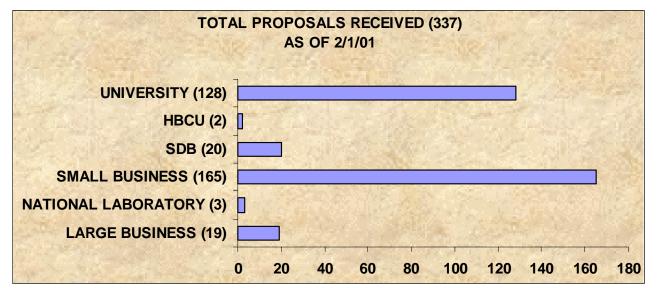
Definitions: Phase I and II

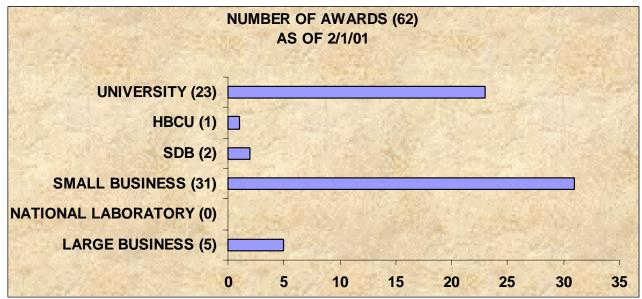
PHASE I 6 months \$50 - 75K

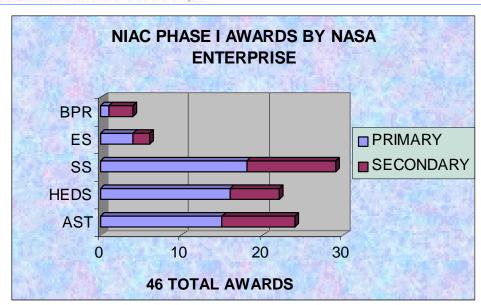
- ① Is the concept revolutionary rather than evolutionary? To what extent does the proposed activity suggest and explore creative and original concepts?
- ② Is the concept for an architecture or system, and have the benefits been qualified in the context of a future NASA mission?
- ③ Is the concept substantiated with a description of applicable scientific and technical disciplines necessary for development?

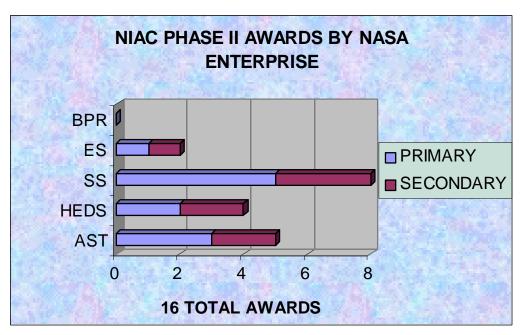
PHASE II up to 24 months up to \$500K

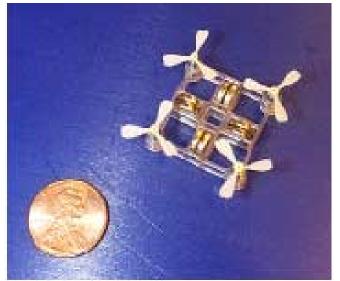
- ① Does the proposal continue the development of a revolutionary architecture or system in the context of a future NASA mission? Is the proposed work likely to provide a sound basis for NASA to consider the concept for a future mission or program?
- ② Is the concept substantiated with a description of applicable scientific and technical disciplines necessary for development?
- ③ Have enabling technologies been identified, and has a pathway for development of a technology roadmap been adequately described?
- ④ Has the pathway for development of a cost of the concept been adequately described and are costing assumptions realistic? Have potential performance and cost benefits been quantified?




	CY98			CY99				CY00				CY01			CY02					
	A M J	JAS	D N D	JFM	AM J	J A S	OND	JFM	1 AM J	J A S	OND	JFM	A M J	JAS	OND	JFM	A M J	JAS	OND	JFM
CP98-01 Phase I Grants			СР	98-0	1															
CP98-02 Phase I Grants					C	CP 98	3-02													
CP99-01 Phase II Contracts										CP 9	9-01									
CP99-02 Phase II Contracts												CP 9	9-02							
Phase I Grants									СР	99-0	03									
Phase II Contracts															С	P 00	-01			
Phase I Grants													СР	00-0	02					
Phase II Contracts																				
Phase I Grants																				


Proposals Received and Awards

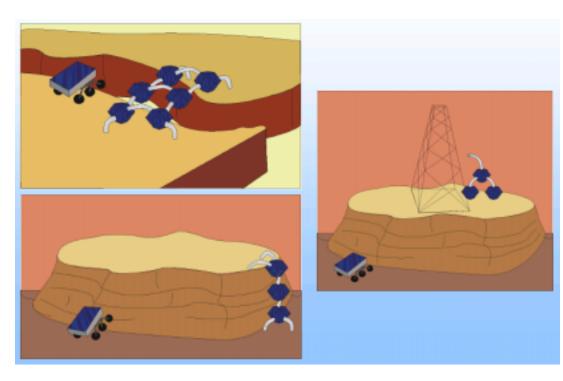

(through February 1, 2001)



CP 99-01 Phase II Awards

PI Name and Organization	Advanced Concept Title
Kroo, Ilan Stanford University	Meso-Scale Flight Vehicle for Atmospheric Sensing
Dubowsky, Steven Massachusetts Inst. Of Technology	Self-Transforming Robotic Planetary Explorers
Hoyt, Robert Tethers Unlimited, Incorporated	Moon and Mars Orbiting Spinning Tether Transport (MMOSTT) Architecture
Winglee, Robert University of Washington	The Mini-Magnetospheric Plasma Propulsion System, M2P2
Woolf, Neville University of Arizona	Very large Optics for the Study of Extrasolar Terrestrial Planets
Gorenstein, Paul Smithsonian Institution Astrophysical Observatory	An Ultra-High Throughput X-Ray Astronomy Observatory with A New Mission Architecture

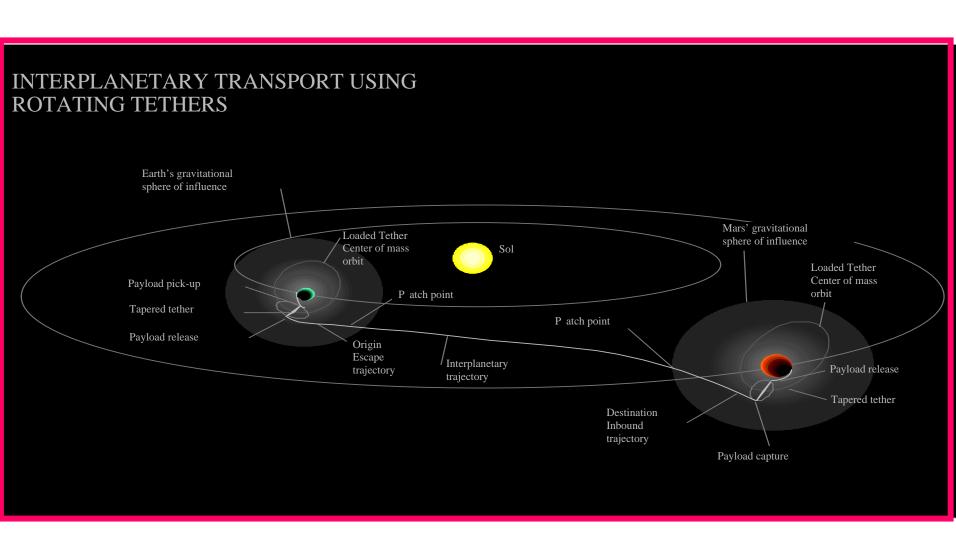
Meso-Scale Flight Vehicle for Atmospheric Sensing Ilan Kroo, Stanford University



Atmospheric Studies

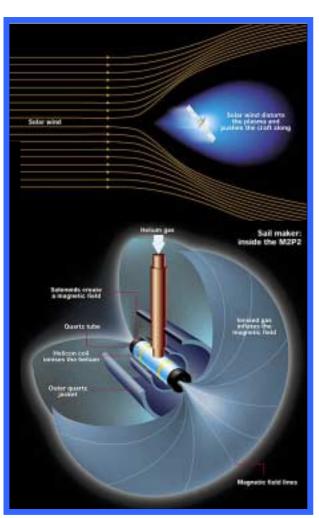

Self-Transforming Robotic Planetary Explorers Steven Dubowsky, Massachusetts Institute of Technology

Self- Transforming Explorer/ Worker Robot Concept (2010)


- Network of Node Elements
- Connected by Active Binary Elements (ABEs)

Moon and Mars Orbiting Spinning Tether Transport (MMOSTT) **Architecture**

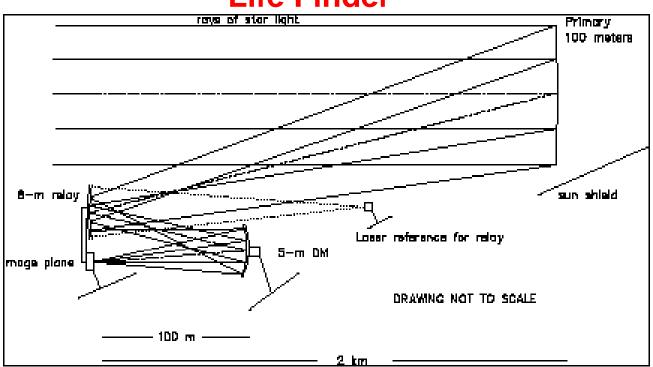
Robert P. Hoyt, Tethers Unlimited, Inc.



The Mini-Magnetospheric Plasma Propulsion System, M²P² Robert M. Winglee, University of Washington

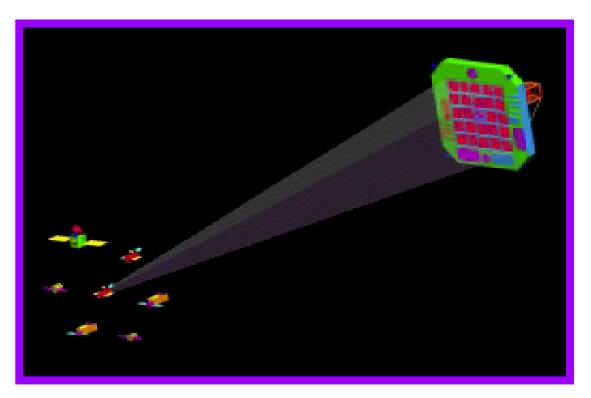
Concept for interstellar propulsion and radiation shielding

Graphics by permission of New Scientist



Hubble Space Telescope (operational)

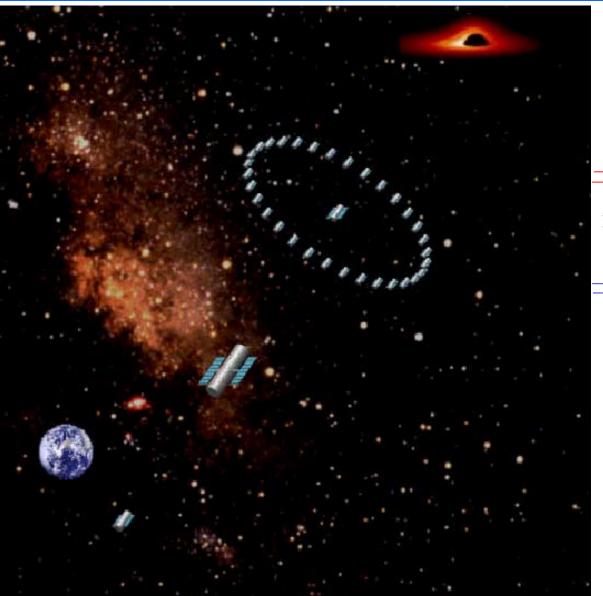
Terrestrial Planet Finder (concept development)

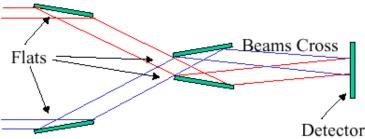


An Ultra-High Throughput X-Ray Astronomy Observatory with A New Mission Architecture

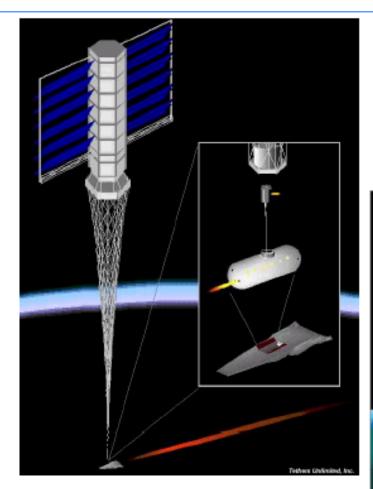
Paul Gorenstein, Smithsonian Institute, Astrophysical Observatory

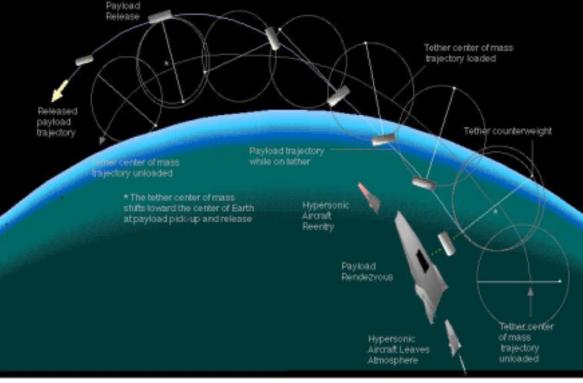
- 30m diameter, 300m focal length, arcsecond resolution
- Physically detached, station-kept components
- Located at L2 point
- Accommodate large variety of detectors
- Not dependent on success of single launch
- Potentially low cost per effective collector area
- Development of light weight, high performance X-ray reflectors
- Propulsion for LEO to L2, attitude control and highly accurate linear movements
- Missions operation and robotic assembly of telescope

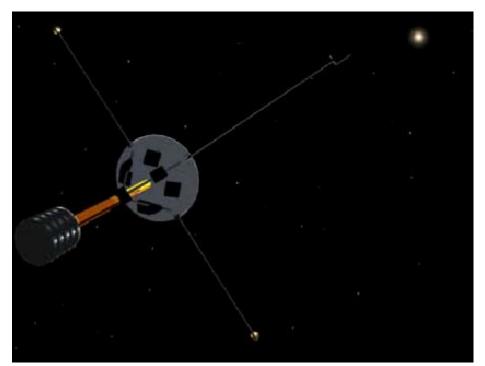



CP 99-02 Phase II Awards

PI Name and Organization	Advanced Concept Title
Cash, Webster University of Colorado	X-Ray Interferometry
Grant, John The Boeing Corporation	Hypersonic Airplane Space Tether Orbital Launch (HASTOL) Study
M ^c Nutt, Ralph The Johns Hopkins University	A Realistic Interstellar Explorer
Nock, Kerry Global Aerospace Corporation	Global Constellation of Stratospheric Scientific Platforms
Rice, Eric Orbital Technologies Corp.	Advanced System Concept for Total ISRU- Based Propulsion and Power Systems for Unmanned and Manned Mars Exploration

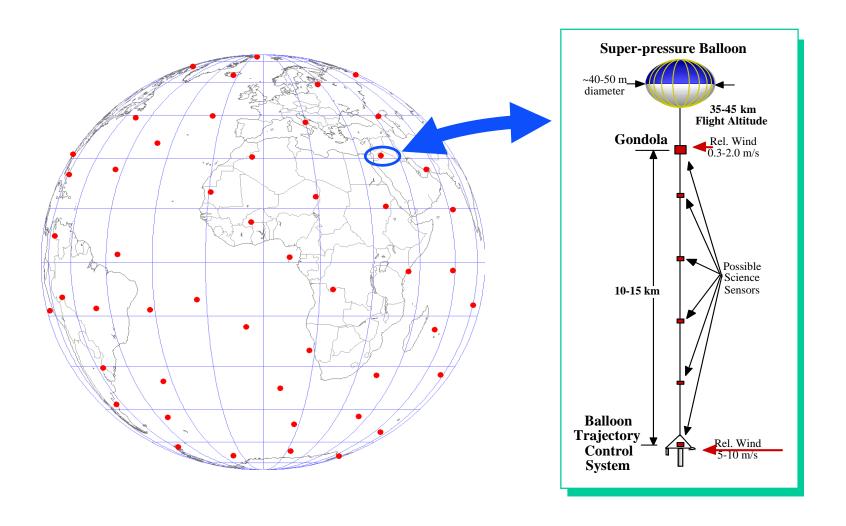

X-ray Interferometry - Ultimate Astronomical Imaging Webster Cash, University of Colorado



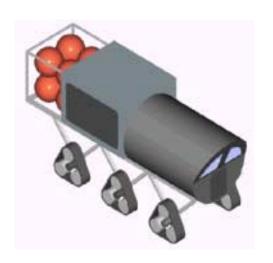


Hypersonic Airplane Space Tether Orbital Launch – HASTOL John Grant, The Boeing Company

- A mission past the boundary of the heliosphere would yield a rich scientific harvest.
- Explore the nature of the interstellar medium and its implications for the origin and evolution of matter in the Galaxy.
- Explore the structure of the heliosphere and its interaction with the interstellar medium.
- Explore fundamental astrophysical processes occurring in the heliosphere and the interstellar medium.
- Determine fundamental properties of the universe (e.g. big-bang, nucleosynthesis, location of gamma-ray bursts (GRRs), gravitational waves, and a non-zero cosmological constant.


MISSION CONCEPT

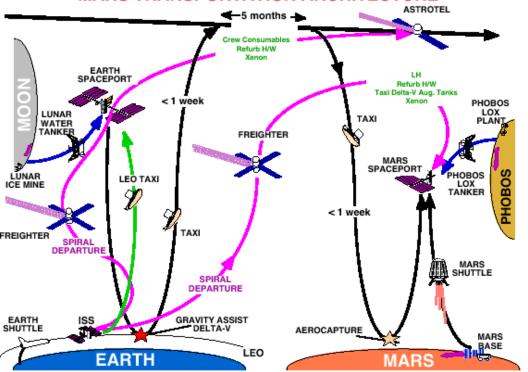
- Reach a significant penetration into the Very Local Interstellar Medium out to ~1000 AU within the working lifetime of the probe developers (< 50 years)
- To reach high escape speed, use a solar gravity assist (due to Oberth, 1929):
 - (1) Launch to Jupiter and use a retrograde trajectory to eliminate heliocentric angular momentum
 - (2) Fall into 4 solar radii from the center of the Sun at perihelion
 - (3) Use an advanced- propulsion system ΔV maneuver to increase probe energy when its speed is highest to leverage rapid solar system escape

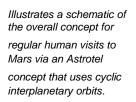

Global Constellation of Stratospheric Scientific Platforms

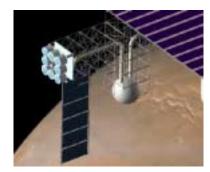
Kerry Nock, Global Aerospace Corporation

Advanced System Concept for Total ISRU-Based Propulsion and Power Systems for Unmanned and Manned Mars Exploration Eric Rice, Orbital Technologies Corporation

- Overall architecture for producing and utilizing Mars-based ISRU propellant combinations for ground/flight transportation and power.
- Ground systems: automated unmanned roving vehicles, personal vehicles, two-person unpressurized rovers, manned pressurized transport rovers and cargo transport.
- Flight systems: Mars sample return vehicles, manned and unmanned "ballistic hoppers," surface to orbit vehicles, interplanetary transport vehicles, powered balloons, winged aircraft, single-person rocket backpacks and single-person rocket platforms.
- Define propellant family scenarios, vehicle/system families, mission and traffic models.


CP 00-01 Phase II Awards


PI Name and Organization	Advanced Concept Title
Nock, Kerry Global Aerospace Corporation	Cyclical Visits to Mars via Astronaut Hotels System
Maise, George PlusUltra Technologies, Inc.	Exploration of Jovian Atmosphere Using Nuclear Ramjet Flyer
Keith, Andrew Sikorsky Aircraft Corporation	Methodology for Study of Autonomous VTOL Scalable Logistics Architecture
Edwards, Bradley Eureka Scientific	The Space Elevator
Colozza, Anthony Ohio Aerospace Institute	Planetary Exploration Using Biomimetics

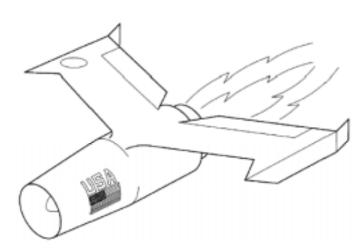


Cyclical Visits to Mars via Astronaut Hotels Kerry Nock, Global Aerospace Corporation

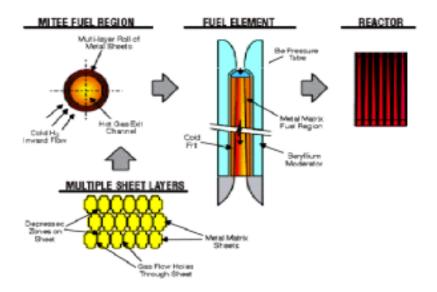
MARS TRANSPORTATION ARCHITECTURE

Astrotel IPS

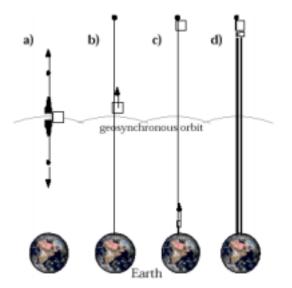
Taxi departing

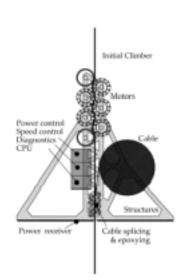


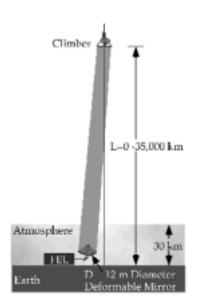
Taxi during Mars Aerocapture

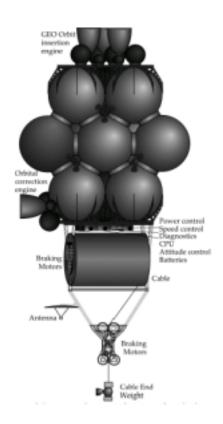


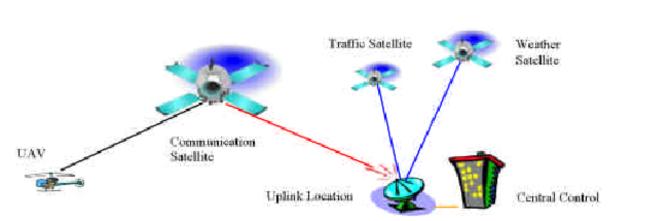
Exploration of Jovian Atmosphere Using Nuclear Ramjet Flyer George Maise, Plus Ultra Technologies, Inc.

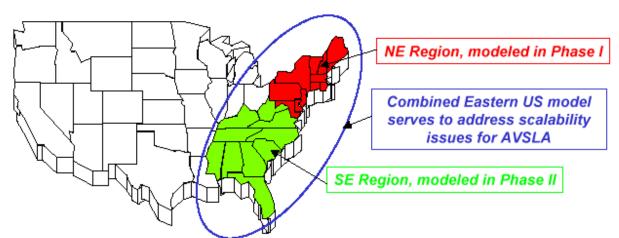

- Ramjet flyer provides unique tool for mapping in Jovian atmosphere
- Applicable to other planetary atmospheres
- Designed to operation indefinitely in Jupiter's atmosphere
- Design speed, M = 1.5
- Instruments in wingtips for sampling
- Operates in the three uppermost cloud layers:
 - (1) Entire uppermost visible NH₃ ice cloud layer
 - (2) Entire NH₄HS ice cloud layer
 - (3) Upper portion of the H₂O ice cloud layer




MITEE Nuclear Engine

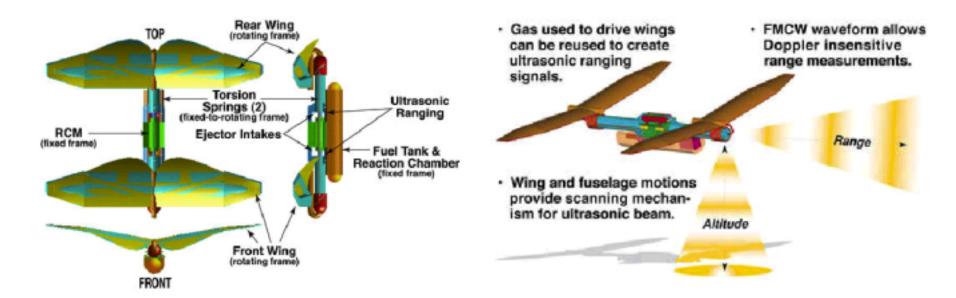





Methodology for Study of Autonomous VTOL Scalable Logistics Architecture

Andrew Keith, Sikorsky Aircraft Corporation

- Focused on autonomous, express package shipping services.
- Reduced travel times, improved air quality and reduction of demand on surface transportation infrastructure
- Elements relate directly to potential ATM, "free flight" applications for general and commercial aviation


Phase I focus on example

In-depth analysis of the current products shipped in the United States, particularly in the Northeast Region.

Phase II:

Expansion into SE region

- Flight in low pressure Mars atmosphere is made possible by flapping wings that can generate much higher lift coefficients at low R_e than fixed wings
- · Lift and control is augmented by circulation control over wings
- Power and gas for circulation control provided by Recirculating Chemical Muscle using propellants that may be derived through ISRU